GNSS signal authentication
– some applications and implementation options

Markus Kuhn

http://www.cl.cam.ac.uk/~mgk25/
Spoofing navigation signals has a long history

“Wreckers” or “mooncussers” faking light-tower signals to lure cargo ships into dangerous waters and steal cargo from the wreck

“Mooncussers on rock with lantern”
Brenda Z. Guiberson: Lighthouses: Watchers at Sea, 1995
GNSS signal authentication

In a hostile environment, a GNSS receiver ought to be able to distinguish whether its RF input signal is

- **genuine** – received straight from the expected satellite
- **spoofed** – synthesized by a signal generator, alternated by a signal processing system, not propagated along a straight line

Remote spoofing threat

In military applications: main worry are spoofed RF signals emitted at a distance, to redirect or confuse bombs, soldiers, or vehicles elsewhere. → “Navigation warfare” (NAVWAR)

- Local antenna trusted
- Spoofer interferes from a distance

Local spoofing threat

In some civilian applications: → Remote attestation

- Person in possession of GNSS receiver is not trusted
- Antenna manipulated, replaced, covered
- Spoofer controls local RF-input port of GNSS receiver
Existing real-word sensor attacks

PVT-sensor spoofing devices have already been found “in the wild” by British police: in commercial good vehicles between tachograph and gearbox sensor. Drivers use them to manipulate their velocity and working-hours record.
Remote attestation of position

Remotely-queried navigation-signal receiver R is a trusted component, in the hands of someone (thief, electronic prisoner, road-tax avoider) who wants it to report a \textit{pretended position} r' instead of its \textit{actual position} r.
Example application: offender tagging

- GNSS signal
- Short range RF
- RF bracelet
- GNSS/GSM unit
- GSM
Attacks on an offender tagging system

- sabotage unit and pretend malfunction
- detach RF bracelet without raising alarm
- relay between GNSS/GSM unit and distant GSM base station
- tamper with GNSS/GSM unit (extract keys, modify firmware) to spoof location-attestation protocol
- relay between bracelet and distant GNSS/GSM unit
- spoof GNSS signal, as it would be received elsewhere

Remote attestation

An offender tagging system is just one example of a GNSS application where the person in possession of the receiver has an interest in obtaining a fake navigation solution.
Global positioning systems in future cars

GNSS receivers are becoming a standard feature in new cars.

Primary applications:
- route finding, service location
- automatic emergency calls

Service to the driver, no tamper-resistance requirement

Secondary applications:
- fleet management
- usage-based car insurance
- usage-based road tax
- congestion charging
- speed-limit enforcement
- theft protection
- forensic reconstruction of accidents, alibi verification, . . .

Potential legislative/contractual requirement, adversarial user, tamper-resistance requirement
Use-based car insurance

First deployment of “tamper resistant” GPS in private cars

▶ pay-as-you-drive or pay-how-you-drive policies:
 • US (Progressive Insurance Snapshot, MetroMile, etc.)
 • Italy (Octo Telematics)
 • Spain (Telefónica Insurance Telematics)
 • Germany (Sparkasse S-Drive-Service)
 • Discontinued: UK (Norwich Union), Ireland (AXA “Traksure”)

▶ milage during peak and off-peak hours → transfer via GSM
▶ currently an add-on GPS box provided by insurance company
▶ later integrated with normal onboard computer network

 Progressive’s “TripSense” OBD-II module is a first step in that direction

▶ eventually merely a 3rd-party software applet?
 • standardized car operating-system API
 • compartmentalization and trusted computing features

▶ privacy concerns vs substantial insurance discounts
Remote attestation of aggregated position

Privacy-friendly version: car owner can inspect data aggregator applet (simple fee spread sheet).
Secure positioning – cryptography at light speed

Conventional cryptographic authentication protocols
▶ establish the identity of communication partners
▶ protect the integrity of data
but do not authenticate
▶ the location of communication partners
▶ the nanosecond-resolution transmission time of data

Protection technologies:
▶ Asymmetric security for satellite navigation signals
▶ Two-way distance-bounding protocols
▶ Tamper-resistant hardware
Pseudorange positioning systems

\[g(\mathbf{r}, t) = \sum_i A_i \cdot s_i \left(t - \frac{d_i}{c} \right) + n(\mathbf{r}, t) \]
Correlation receiver

\[C_i(r, t) = \int g(r, \tau) \cdot s(\tau - t) \, d\tau \]
Existing technology:

▶ GPS/Galileo open access channel: highly predictable signal ⇒ everyone can fake the satnav signal
▶ GPS military channel: encrypted spreading sequence military receivers know private key ⇒ insider can still fake signal
▶ Galileo subscription channel: need to break SIM to fake signal

Wanted: Asymmetric security

▶ Those who can verify the integrity of the signal cannot at the same time fake it.
▶ Public-key signatures provide this for data.
▶ But in navigation, not only the data, but also its nanosecond relative arrival time must be protected against manipulation (selective-delay attacks).
Message authentication codes / Digital signatures

Message authentication code (MAC)

- $K \leftarrow \text{Gen}$ \hspace{1cm} private-key generation
- $C \leftarrow \text{Mac}_K(M)$ \hspace{1cm} MAC generation
- $\text{Vrfy}_K(M', C) = 1$ \hspace{1cm} MAC verification
 \[\Leftrightarrow M \overset{?}{=} M' \]

Typical MAC lengths: 24...96 bit

Digital signature

- $PK, SK \leftarrow \text{Gen}$ \hspace{1cm} public/secret key-pair generation
- $S \leftarrow \text{Sign}_{SK}(M)$ \hspace{1cm} signature generation using secret key
- $\text{Vrfy}_{PK}(M', S) = 1$ \hspace{1cm} signature verification using public key
 \[\Leftrightarrow M \overset{?}{=} M' \]

Typical signature length: 320 bits (ECDSA), can offer message recovery
Hash chains

One-way “hash” functions

A function \(h \) is one way if it is not computationally feasible to find for a given \(y \) any \(x \) such that \(h(x) = y \).

Examples: SHA-1, SHA-2, SHA-3

Lamport hash chain

- Chose length \(n \) and secret random start value \(R_n \) (e.g. 80...128 bit)
- Generate \(R_0, R_1, \ldots, R_{n-1} \) with \(R_{i-1} = h(R_i) \) or equivalently

\[
R_i = h(h(h(\ldots h(R_n)\ldots))) = h^{n-i}(R_n)
\]

- \((n - i) \) times

- Publish/reveal \(R_0 \) over authenticated channel

When \(R_1 \) is revealed, everyone who already knows \(R_0 \) can verify that \(R_1 \) is genuine via \(R_0 = h(R_1) \). Similarly when \(R_2 \) is revealed, etc.
TESLA uses a hash chain to authenticate broadcast data, without any need for a digital signature for each message.

Timed broadcast of data sequence M_1, M_2, \ldots, M_n:

- $t_0 : \text{Sign}_{PK}(t_1, t_i - t_{i-1}, R_0)$, R_0 where $R_0 = h(R_1)$
- $t_1 : (\text{Mac}_{R_2}(M_1), M_1, R_1)$ where $R_1 = h(R_2)$
- $t_2 : (\text{Mac}_{R_3}(M_2), M_2, R_2)$ where $R_2 = h(R_3)$
- $t_3 : (\text{Mac}_{R_4}(M_3), M_3, R_3)$ where $R_3 = h(R_4)$
- $t_4 : (\text{Mac}_{R_5}(M_4), M_4, R_4)$ where $R_4 = h(R_5)$
- \ldots

Each R_i is revealed at a pre-agreed time t_i. The MAC for M_i can only be verified after t_{i+1} when key R_{i+1} is revealed.

By the time the MAC key R_i is revealed, everyone has already received the Mac$_{R_i}$, therefore the key can no longer be used to spoof the message.

All MAC bits and initial bits of R_i are unpredictable. Note that the final bits of R_i could be brute forced at low transmission rates, and therefore cannot be considered unpredictable.

Using $R_i = h(t_i, R_{i+1})$ instead eliminates the risk of hash chain entering a cycle.
Pseudorange positioning systems

\[g(r, t) = \sum_i A_i \cdot s_i \left(t - \frac{d_i}{c} \right) + n(r, t) \]
Synthesis of predictable signal

Attacker connects receiver to a signal generator that emulates – knowing the predictable waveforms $s_i(t)$ – the signal $g(r', t)$, as it would be received at the pretended position r'.

Countermeasure:

- Add to $s_i(t)$ an unpredictable but verifiable element, e.g. include a message authentication code or digital signature of the current time and navigation message.
Selective-delay attack

Attacker uses signal $g(r, t)$ at the actual position r and converts it into a prediction of the signal $g(r', t - \Delta t)$ that would have been received at the pretended position r' a short time Δt earlier, and feeds that into the receiver.

Prerequisite:

Attacker needs to decompose

$$g(r, t) = \sum_i A_i \cdot s_i \left(t - \frac{d_i}{c} \right)$$

Countermeasures:

- Give receiver a high-accuracy local trusted clock precise to detect delay Δt.
- Make it difficult to decompose signal into contributions from different satellites.
Relaying attack

Disconnect R from its antenna and connect it via a communication link to a remote antenna at pretended location r'. Less likely, since

- challenging logistics for attacker
- remote antenna easy to locate
- wideband signal may be difficult to relay with low latency
Making the navigation signal unpredictable

Navigation signal = Spreading code \times navigation message

GPS C/A signal:
- Spreading code = 1.023 Mbit/s (chips) repeating every 1ms
- Navigation message = 50 bit/s

Equivalent distances:
- 1 chip = 1 \mu s = 300 m
- 1 PRN cycle = 1 ms = 300 km
- 1 bit = 20 ms = 6000 km

Galileo OS similar: \approx 2 Mbit/s, 200 bit/s
Asymmetric satnav security through hidden markers:

This solution is a steganographic process:
- Transmitters broadcast unpredictable spread-spectrum carrier below noise threshold.
- Receivers record full bandwidth.
- Transmitters release random-noise seed after a delay ρ.
- Receivers use FFT-based convolution to detect hidden markers.

\[
s_i(t - d_i/c)
\]

\[
M_{i,m}
\]
A local timebase drives a local random-bit generator, which a PLL controlled by a real-time early/late correlator keeps phase-locked with the transmitter’s timebase. The controller switches between the sequences of different satellites and adjusts/records their relative delay.

Delayed correlation receiver:
Basic idea

- Every few seconds, all transmitters broadcast a *hidden marker*.
- A hidden marker carries no data.
- It is an unpublished spreading sequence broadcast at least 30 dB below the minimal noise seen by any receiver.
- Receivers digitize and buffer in RAM the full bandwidth of the hidden markers while they are broadcast. This preserves their relative arrival times, but it cannot be accessed yet.
- After a delay ρ, the transmitters broadcast the seed value used to generate the hidden marker, which was secret until then.
- Receivers (and attackers!) can only now identify and separate the markers in the recorded antenna signal.

A signal-synthesis or selective-delay attack can now be performed only with a delay $\Delta t > \rho$.

Choose ρ large enough (e.g., 10 s), such that even receivers with a cheap clock can discover the delay in the received timestamps.
Attacks with directional antennas

Problem: Attacker could use four directional antennas that track the satellites to isolate their signals (for a selective-delay attack).

- If antenna gain is high enough to lift signal out of noise, it can be made noise-free with a threshold operator.
- Otherwise, attacker can still delay and mix the four antenna signals, without removing their noise.

Potential countermeasure: No directional antenna is perfect.

- Attenuated residual signals from all transmitters will be present in each antenna signal.
- If these show up as secondary peaks in the cross correlation ⇒ selective-delay attack is in progress.
- Receiver rejects correlation results with too high secondary peaks.
- Maximum amplitude of secondary peak is a security parameter that determines attack cost.
A GNSS signal today is the product of a fast spreading code (1–10 Mbit/s) and a slow navigation data stream (50–500 bit/s).

Switching to an initially secret spreading code is a major change to a GNSS system, not easily achieved in the near future.

Alternative approach: adding unpredictable bits to the navigation message also creates unpredictable clock edges.

Problems:

- unpredictable bits appear at a significantly lower rate (10^6)
- an attacker can perform early detection
 - a normal receiver detects data bits using a matched filter that integrates the signal over the full duration of the data bit \rightarrow lowest bit error rate
 - a spoofer can operate a receiver that detects data bits after integrating only an initial fraction of the duration of the data bit \rightarrow earlier knowledge at the cost of higher bit error rate
 - a spoofer can then adjust the data value in the spoofed signal for the remaining duration of the bit period
Special detector provides early bit estimate

(a) transmitted signal, (b) channel noise, (c) received signal, (d) integrator output in detector
Special detector provides early bit estimate

(a) transmitted signal, (b) integrator output in detector, (c) generated spoofed signal

Early decision:

- At start of bit \((t_0)\), output neutral value 0
- After fraction \(x\) of the bit duration \(T\) has passed \((t > t_0 + xT)\), output

\[
sgn(b(t_0 + xT)) \cdot (1 - x)^{-1}
\]
Special detector provides early bit estimate

(a) transmitted signal, (b) integrator output in detector, (c) generated spoofed signal

Maximum likelihood estimate (ML):\[b(t) = (t - t_0)^{-1} \cdot \int_{t_0}^{t} a(t) \, dt \]

- Continuously output current integrator value:

\[b(t) \]

[Humphreys 2013]
Special detector provides early bit estimate

Maximum a posteriori probability (MAP): \(b(t) = (t - t_0)^{-1} \cdot \int_{t_0}^{t} a(t) \, dt \)

- Continuously apply threshold to current integrator value:

\[\text{sgn}(b(t)) \]

(a) transmitted signal, (b) integrator output in detector, (c) generated spoofed signal

[Humphreys 2013]
Special detector provides early bit estimate

(a) transmitted signal, (b) integrator output in detector, (c) generated spoofed signal

Minimum mean-square error (MMSE): \(b(t) = (t - t_0)^{-1} \cdot \int_{t_0}^{t} a(t) \, dt \)

- Continuously output:
 \[
 \tanh \left(\frac{b(t)}{\sigma^2(t)} \right)
 \]

[Humphreys 2013]
Unpredictable data bits: don’t expect too much

An unpredictable data bit is only unknown to the spoofer during the first fraction of the bit period (e.g. tens of microseconds, depending on C/N) and revealed clearly immediately afterwards

▶ GNSS receiver needs highly accurate independent clock for authentication based on unpredictable bits
 • required accuracy not available from non-GNSS sources
 • data-based authentication only practical if receiver was recently tracking a genuine signal
 • in many remote-attestation applications, the spoofer may have full control over the antenna signal for week, right from cold boot

▶ adding random data bits complicates spoofer design somewhat (early detector, COTS receivers output data only at end of subframe), but ultimately no substitute for the steganographic solution

▶ random data bits best added in form of TESLA authentication of navigation message (prerequisite for steganographic solution)

▶ investigate adding separate steganographic channel, with deliberately low carrier power, aimed at long integration times
Authenticate the navigation message, e.g. via TESLA

- **not** because we care a lot about the navigation message (can easily be retrieved via HTTPS),
- **but** because it adds lots of unpredictable data bits.
- **can** be useful where receiver has accurate independent time, to verify timely (1 µs) arrival of leading edge of random bits
Random data bits are no substitute for the steganographic solution:

- useless to receivers without accurate (1 µs) clock, as each data bit is fully revealed within a few tens of microseconds.

Steganographic spreading code could be added on top of normal signal in-phase at <-30 dB relative power

- does not have to support acquisition and tracking: receiver only needs to verify its presence to confirm timing of regular signal
- can be detected with long integration time (seconds)
- does not have to be continuously available, just serves to confirm samples of the navigation solution derived from regular signals.
- backwards compatible
References

https://www.cl.cam.ac.uk/research/security/